Ib Math Hl Ia, Zeros of Cubic Functions
Autor: Soundtallica • June 23, 2012 • Coursework • 1,573 Words (7 Pages) • 2,170 Views
Mathematics IB Higher Level Portfolio (Internal Assessment):
Zeros of Cubic Functions
Brendan Lee
March 2010
Q1: Consider the Cubic equation:〖f(x)=2x〗^3+〖6x〗^2-4.5x-13.5:
The graph is shown here:
Graphed on GCalc 3.0
The zeros of this equation are:
x=-3
x=-1.5
x=1.5
This can be proved using the remainder theorem:
〖f(-3)=2(-3)〗^3+〖6(-3)〗^2-4.5(-3)-13.5
f(-3)=2(-27)+6(9)-(-13.5)—13.5
f(-3)=0
〖f(-1.5)=2(-1.5)〗^3+〖6(-1.5)〗^2-4.5(-1.5)-13.5
f(-1.5)=2(-3.375)+6(2.25)+6.75—13.5
f(-1.5)=0
〖f(1.5)=2(1.5)〗^3+〖6(1.5)〗^2-4.5(1.5)-13.5
f(1.5)=2(3.375)+6(2.25)-6.75—13.5
f(1.5)=0
Equations of tangent lines at average of two roots:
Roots -1.5 and -3:
Average: (-1.5+(-3))/2=-2.25
〖y=2(-2.25)〗^3+〖6(-2.25)〗^2-4.5(-2.25)-13.5
y≈-4.2
Slope at (-2.25, -4.2)
f^' (x)=〖6x〗^2+12x-4.5
m=〖6(-2.25)〗^2+12(-2.25)-13.5=-1.125
y – y1 = m(x – x1)
y –(-4.2)= -1.125(x –(-2.25))
Equation of tangent line: y=-1.125x+1.7
Graphed on GCalc 3.0
Roots 1.5 and -1.5:
Average: (-1.5+1.5)/2=0
〖y=2(0)〗^3+〖6(0)〗^2-4.5(0)-13.5
y=-13.5
Slope at (0, -13.5)
f^' (x)=〖6x〗^2+12x-4.5
m=〖6(0)〗^2+12(0)-4.5=4.5
...